Skip to content

euclidean_distance

source

.euclidean_distance(
   distances
)


Computes euclidean distances - norm of vectors

Args

  • distances (np.array) : n-dimensional coordinates of points

Returns

  • euxlidean_distances (np.array) : array with euclidean distances

pear_correlation

source

.pear_correlation(
   distance_matrix, embedding
)


Computes pearson correlation between euclidean distances in different dimensionalities

Args

  • distance_matrix (np.array) : n-dimensional distance matrix
  • embedding (np.array) : (m < n)-dimensional embedding

Returns

  • correlation (float) : pearson correlation

DRM

source

.DRM(
   distance_matrix, embedding, inverse_emb
)


Return DRM object from https://github.com/zhangys11/pyDRMetrics

Args

  • distance_matrix (np.array) : n-dimensional distance matrix
  • embedding (np.array) : (m < n)-dimensional embedding
  • inverse_emb (np.array) : reverse fit of model on embeddings

Returns

  • DRM : DRM object with quality metrics

Last update: 2024-04-22